En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:
нефтегазовая промышленность
стабилизатор ведущей бурильной трубы
['wi(ə)ri'wili]
сленг
бездельник
тунеядец
бродяга
босяк
нефтегазовая промышленность
ведущая бурильная труба
Смотрите также
The theory of quantum error correction plays a prominent role in the practical realization and engineering of quantum computing and quantum communication devices. The first quantum error-correcting codes are strikingly similar to classical block codes in their operation and performance. Quantum error-correcting codes restore a noisy, decohered quantum state to a pure quantum state. A stabilizer quantum error-correcting code appends ancilla qubits to qubits that we want to protect. A unitary encoding circuit rotates the global state into a subspace of a larger Hilbert space. This highly entangled, encoded state corrects for local noisy errors. A quantum error-correcting code makes quantum computation and quantum communication practical by providing a way for a sender and receiver to simulate a noiseless qubit channel given a noisy qubit channel whose noise conforms to a particular error model.
The stabilizer theory of quantum error correction allows one to import some classical binary or quaternary codes for use as a quantum code. However, when importing the classical code, it must satisfy the dual-containing (or self-orthogonality) constraint. Researchers have found many examples of classical codes satisfying this constraint, but most classical codes do not. Nevertheless, it is still useful to import classical codes in this way (though, see how the entanglement-assisted stabilizer formalism overcomes this difficulty).